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Optimization
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Architecture and Performance

• Advanced Performance Optimization requires 
transparency
– X-ray vision

• Impossible without understanding system 
architecture

• Focus on Conceptual Aspects
– Exact Checksum algorithm Innodb uses is not important
– What matters

• How fast is that algorithm ?
• How checksums are checked/updated



Aspects or Architecture 

• General Architecture
• Storage and File Layout
• Threads
• Memory
• Disk IO
• Logging
• Indexes  
• Multi Versioning
• Row Locking
• Latching
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Aspects of Architecture 2

• Page flushing and Replacement
• Insert Buffering
• Adaptive Hash Index
• BLOB Storage
• Recovery
• Compression Features
• Foreign Keys
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Innodb Version

• Focus on Innodb Plugin and XtraDB
• Most things are the same in MySQL 5.1 built in 

Innodb 
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Important Notice

• I'm bad with drawings
• You will need to use your imagination 

– And watch my hands
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General Architecture

• Traditional OLTP Engine
– “Emulates Oracle Architecture”

• Implemented using MySQL Storage engine API
• Row Based Storage. Row Locking. MVCC
• Data Stored in Tablespaces
• Log of changes stored in circular log files
• Data pages as pages in “Buffer Pool”
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Storage Files Layout

Physical Structure of Innodb Tabespaces and Logs
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Innodb Tablespaces

• All data stored in Tablespaces
– Changes to these databases stored in Circular Logs
– Changes has to be reflected in tablespace before log 

record is overwritten

• Single tablespace or multiple tablespace
– innodb_file_per_table=1

• System information always in main tablespace
– Ibdata1
– Main tablespace can consist of many files

• They are concatenated

-9-



Tablespace Format

• Collection of Segments
– Segment is like a “file”

• Segment is number of extents
– Typically 64 of 16K page sizes
– Smaller extents for very small objects

• First Tablespace page contains header
– Tablespace size
– Tablespace id 
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Types of Segments

• Each table is Set of Indexes
– Innodb has “index organized tables”

• Each index has
– Leaf node segment
– Non Leaf node segment

• Special Segments
– Rollback Segment
– Insert buffer, etc
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Innodb Space Allocation

• Small Segments (less than 32 pages)
– Page at the time

• Large Segments
– Extent at the time  (to avoid fragmentation)

• Free pages recycled within same segment
• All pages in extent must be free before it is used in 

different segment of same tablespace
– innodb_file_per_table=1  - free space can be used by 

same table only

• Innodb never shrinks its tablespaces
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Innodb Log Files

• Set of log files
– ib_logfile?
– 2 log files by default. Effectively concatenated 

• Log Header
– Stores information about last checkpoint

• Log is NOT organized in pages, but records
– Records aligned 512 bytes, matching disk sector

• Log record format “physiological”
– Stores Page# and operation to do on it

• Only REDO operations are stored in logs.
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Storage Tuning Parameters

• innodb_file_per_table
– Store each table in its own file/tablespace 

• innodb_autoextend_increment
– Extend system tablespace in this increment

• innodb_log_file_size
• innodb_log_files_in_group

– Log file configuration

• Innodb page size
– Code Change Required
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Using to File per Table

• Typically more convenient
• Reclaim space from dropped table
• ALTER TABLE ENGINE=INNODB 

–  reduce file size after data was deleted

• Store different tables/databases on different drives
• Backup/Restore tables one by one
• Support for compression in Innodb Plugin/XtraDB
• Will use more space with many tables
• Longer unclean restart time with many tables
• Performance is typically similar
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Dealing with Run-away tablespace

• Main Tablespace does not shrink
– Consider setting max size 
– innodb_data_file_path=ibdata1:10M:autoextend:max:10G

• Dump and Restore
• Export tables with XtraBackup 

– And import them into “clean” server
– http://www.mysqlperformanceblog.com/2009/06/08/impossible-possible-moving-innodb-tables-

between-servers/
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Resizing Log Files

• You can't simply change log file size in my.cnf
– InnoDB: Error: log file ./ib_logfile0 is of different size 0 

5242880 bytes
– InnoDB: than specified in the .cnf file 0 52428800 bytes!

• Stop MySQL (make sure it is clean shutdow)
• Rename (or delete) ib_logfile*
• Start MySQL with new log file settings

– It will create new set of log files
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Innodb Threads Architecture

What threads are there and what they do
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General Thread Architecture

• Using MySQL Threads for execution
– Normally thread per connection

• Transaction executed mainly by such thread
– Little benefit from Multi-Core for single query

• innodb_thread_concurrency can be used to limit 
number of executing threads
– Reduce contention

• This limit is number of threads in kernel
– Including threads doing Disk IO or storing data in TMP 

Table.
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Helper Threads

• Main Thread
– Schedules activities – flush, purge, checkpoint, insert 

buffer merge

• IO Threads
– Read – multiple threads used for read ahead 
– Write – multiple threads used for background writes
– Insert Buffer thread used for Insert buffer merge
– Log Thread used for flushing the log

• Purge thread (MySQL 5.5 and XtraDB)
• Deadlock detection thread.
• Monitoring Thread

-20-



Memory Handling

How Innodb Allocates and Manages Memory
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Innodb Memory Allocation

• Take a look at SHOW INNODB STATUS
– XtraDB has more details

Total memory allocated 1100480512; in additional pool allocated 0
Internal hash tables (constant factor + variable factor)
    Adaptive hash index 17803896        (17701384 + 102512)
    Page hash           1107208
    Dictionary cache    8089464         (4427312 + 3662152)
    File system         83520   (82672 + 848)
    Lock system         2657544         (2657176 + 368)
    Recovery system     0       (0 + 0)
    Threads             407416  (406936 + 480)
Dictionary memory allocated 3662152
Buffer pool size        65535
Buffer pool size, bytes 1073725440
Free buffers            64515
Database pages          1014
Old database pages      393
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Memory Allocation Basics

• Buffer Pool
– Set by innodb_buffer_pool_size
– Database cache; Insert Buffer; Locks
– Takes More memory than specified

• Extra space needed for Latches, LRU etc

• Additional Memory Pool
– Dictionary and other allocations
– innodb_additional_mem_pool_size

• Not used in newer releases

• Log Buffer
– innodb_log_buffer_size
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Configuring Innodb Memory

• innodb_buffer_pool_size is the most important
– Use all your memory nor committed to anything else
– Keep overhead into account (~5%)
– Never let Buffer Pool Swapping to happen
– Up to 80-90% of memory on Innodb only Systems

• innodb_log_buffer_size
– Values 4-16MB typically make sense
– May need to be larger if using large BLOBs
– See number of data written to the logs
– Log buffer covering 10sec is good enough
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Dictionary 

• Holds information about Innodb Tables
– Statistics; Auto Increment Value, System information
– Can be  4-10KB+ per table

• Can consume a lot of memory with huge number of 
tables
– Think hundreds of thousands

• innodb_dict_size_limit
– Limit the size in Percona Server
– Make it act as a real cache
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Disk IO

How Innodb Performs Disk IO
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Reads

• Most reads done by executing threads
• Read-Ahead performed by background threads

– Linear
– Random  (removed in later versions)
– Do not count on read ahead a lot 

• Insert Buffer merge process causes reads
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Writes

• Data Writes are Background in Most cases
– As long as you can flush data fast enough you're good

• Synchronous flushes can happen if no free buffers 
available

• Log Writes can by sync or async depending on 
innodb_flush_log_at_trx_commit
– 1 – fsync log on transaction commit
– 0 – do not flush. Flushed in background ~ once/sec
– 2 – Flush to OS cache but do not call fsync()

• Data safe if MySQL Crashes but OS Survives 
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Page Checksums

• Protection from corrupted data
– Bad hardware, OS Bugs, Innodb Bugs 
– Are not completely replaced by Filesystem Checksums

• Checked when page is Read to Buffer Pool
• Updated when page is flushed to disk
• Can be significant overhead

– Especially for very fast storage

• Can be disabled by  innodb_checksums=0
– Not Recommended for Production
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Double Write Buffer

• Innodb log requires consistent pages for recovery
• Page write may complete partially

– Updating part of 16K and leaving the rest 

•  Double Write Buffer is short term page level log
• The process is:

– Write pages to double write buffer; Sync
– Write Pages to their original locations; Sync
– Pages contain tablespace_id+page_id

• On crash recovery pages in buffer are checked to 
their original location
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Disabling Double Write

• Overhead less than 2x  because write is sequential
• Relatively larger overhead on SSD; Plus life impact;
• Can be disabled if FS guaranties atomic writes

– ZFS 

• innodb_doublewrite=0
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Direct IO Operation

• Default IO mode for Innodb data is Buffered
• Good

– Faster flushes when no write cache
– Faster warmup on restart
– Reduce problems with inode locking on EXT3

• Bad
– Lost of effective cache memory due to double buffering
– OS Cache could be used to cache other data
– Increased tendency to swap due to IO pressure

• innodb_flush_method=O_DIRECT
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Log IO

• Log are always opened in buffered mode
• Flushed by fsync() - default or O_SYNC
• Logs are often written in blocks less than 4K

– Read has to happen before write

• Logs which fit in cache may improve performance
– Small transactions and 

innodb_flush_log_at_trx_commit=1 or 2
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Indexes

How Indexes are Implemented in Innodb
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Everything is the Index

• Innodb tables are “Index Organized”
– PRIMARY key contains data instead of data pointer

• Hidden PRIMARY KEY is used if not defined (6b) 
• Data is “Clustered” by PRIMARY KEY

– Data with close PK value is stored close to each other
– Clustering is within page ONLY

• Leaf and Non-Leaf nodes use separate Segments
– Makes IO more sequential for ordered scans

• Innodb system tables SYS_TABLES and 
SYS_INDEXES hold information about index “root” 
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Index Structure

• Secondary Indexes refer to rows by Primary Key
– No need to update when row is moved to different page

• Long Primary Keys are expensive
– Increase size of all Indexes

• Random Primary Key Inserts are expensive
– Cause page splits; Fragmentation
– Make page space utilization low

• AutoIncrement keys are often better than artificial 
keys, UUIDs, SHA1 etc.
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More on Clustered Index

• PRIMARY KEY lookups are the most efficient
– Secondary key lookup is essentially 2 key lookups

• PRIMARY KEY ranges are very efficient
– Build Schema keeping it in mind 
– (user_id,message_id) may be better than (message_id)

• Changing PRIMARY KEY is expensive
– Effectively removing row and adding new one.

• Sequential Inserts give compact, least fragmented 
storage
– ALTER TABLE tbl=INNODB can be optimization
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More on Indexes

• There is no Prefix Index compressions
– Index can be 10x larger than for MyISAM table
– Innodb has page compression. Not the same thing.

• Indexes contain transaction information = fat
– Allow to see row visibility = index covering queries

• Secondary Keys built by insertion
– Often outside of sorted order = inefficient

• Innodb Plugin and XtraDB building by sort
– Faster
– Indexes have good page fill factor
– Indexes are not fragmented
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Fragmentation

• Inter-row fragmentation
– The row itself is fragmented
– Happens in MyISAM but NOT in Innodb

• Intra-row fragmentation
– Sequential scan of rows is not sequential
– Happens in Innodb, outside of page boundary

• Empty Space Fragmentation
– A lot of empty space can be left between rows

• ALTER TABLE tbl ENGINE=INNODB
– The only medicine available.
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Multi Versioning

Implementation of Multi Versioning and Locking
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Multi Versioning at Glance

• Multiple versions of row exist at the same time
• Read Transaction can read old version of row, while 

it is modified
– No need for locking

• Locking reads can be performed with SELECT FOR 
UPDATE and LOCK IN SHARE MODE Modifiers
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Transaction isolation Modes

• SERIALIZABLE
– Locking reads. Bypass multi versioning

• REPEATABLE-READ  (default)
– Read commited data at it was on start of transaction

• READ-COMMITED
– Read  commited data as it was at start of statement 

• READ-UNCOMMITED
– Read non committed data as it is changing live
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Updates and Locking Reads

• Updates bypass Multi Versioning
– You can only modify row which currently exists

• Locking Read bypass multi-versioning
– Result from SELECT vs SELECT .. LOCK IN SHARE 

MODE will be different

• Locking Reads are slower
– Because they have to set locks
– Can be 2x+ slower !
– SELECT FOR UPDATE has larger overhead 
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Multi Version Implementaition

• The most recent row version is stored in the page
– Even before it is committed

• Previous row versions stored in undo space
– Located in System tablespace

• The number of versions stored is not limited
– Can cause system tablespace size to explode.

• Access to old versions require going through linked 
list
– Long transactions with many concurrent updates can 

impact performance.
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Multi-Versioning Internals

• Each row in the database has 
– DB_TRX_ID  (6b) – Transaction inserted/updated row
– DB_ROLL_PTR  (7b) - Pointer to previous version
– Significant extra space for short rows !

• Deletion handled as Special Update
• DB_TRX_ID + list of currently running transactions is 

used to check which version is visible
• Insert and Update Undo Segments

– Inserts history can be discarded when transaction 
commits.

– Update history is used for MVCC implementation
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Multi Versioning Performance

• Short rows are faster to update
– Whole rows (excluding BLOBs) are versioned
– Separate table to store counters often make sense

• Beware of long transactions
– Especially many concurrent updates

• “Rows Read” can be misleading
– Single row may correspond to scanning thousand of 

versions/index entries
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Multi Versioning Indexes

• Indexes contain pointers to all versions
– Index key 5 will point to all rows which were 5 in the past

• Indexes contain TRX_ID
– Easy to check entry is visible
– Can use “Covering Indexes”

• Many old versions is performance problem
– Slow down accesses
– Will leave many “holes” in pages when purged  
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Cleaning up the Garbage

• Old Row and index entries need to be removed
– When they are not needed for any active transaction

• REPEATABLE READ
– Need to be able to read everything at transaction start

• READ-COMMITED
– Need to read everything at statement start

• Purge Thread may be unable to keep up with 
intensive updates
– Innodb “History Length” will grow high

• innodb_max_purge_lag   slows updates down
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Handling Blobs

• Blobs are handled specially by Innodb
– And differently by different versions

• Small blobs
– Whole row fits in ~8000 bytes stored on the page

• Large Blobs
– Can be stored full on external pages (Barracuda)
– Can be stored partially on external page

• First 768 bytes are stored on the page  (Antelope)

• Innodb will NOT read blobs unless they are touched 
by the query
– No need to move BLOBs to separate table.
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Blob Allocation

• Each BLOB Stored in separate segment
– Normal allocation rules apply. By page when by extent
– One large BLOB is faster than several medium ones
– Many BLOBs can cause extreme waste 

• 500 byte blobs will require full 16K page if it does not fit with row

• External BLOBs are NOT updated in place
– Innodb always creates the new version

• Large VARCHAR/TEXT are handled same as BLOB

-50-



Innodb Locking

How Innodb Locking Works

-51-



Innodb Locking Basics

• Pessimistic Locking Strategy
• Graph Based Deadlock Detection

– Takes shortcut for very large lock graphs

• Row Level lock wait timeout
– innodb_lock_wait_timeout

• Traditional “S” and “X” locks 
• Intention locks on tables  “IS” “IX”

– Restricting table operations

• Locks on Rows AND Index Records
• No Lock escalation 
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Gap Locks

• Innodb does not only locks rows but also gap 
between them

• Needed for consistent reads in Locking mode
– Also used by update statements

• Innodb has no Phantoms even in Consistent Reads
• Gap locks often cause complex deadlock situations
• “infinum”, “supremum” records define bounds of data 

stored on the page
– May not correspond to actual rows stored

• Only record lock is needed for PK Update
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Types of Locks in Innodb

• Next-Key-Lock
– Lock Key and gap before the key

• Gap-Lock
– Lock just the gap before the key

• Record-Only-Lock
– Lock record only

• Insert intention gap locks
– Held when waiting to insert into the gap 
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Advanced Gap Locks Stuff

• Gaps can change on row deletion
– Actually when Purge thread removes record

• Leaving conflicting Gap locks held
• Gap Locks are “purely inhibitive”

– Only block insertion. 
– Holding lock does not allow insertion. Must also wait for 

conflicting locks to be released

• “supremum” record can have lock, “infinum” can't
• This is all pretty complicated and you rarely need it in 

practice

-55-



Lock Storage

• Innodb locks storage is pretty compact
– This is why there is no lock escalation !

• Lock space needed depends on lock location
– Locking sparse rows is more expensive 

• Each Page having locks gets bitmap allocated for it
– Bitmap holds lock information for all records on the page

• Locks typically take 3-8 bits per locked row
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Auto Increment Locks

• Major Changes in MySQL 5.1 !
• MySQL 5.0 and before

– Table level AUTO_INC lock for duration of INSERT
– Even if INSERT provided key value !
– Serious bottleneck for concurrent Inserts

• MySQL 5.1 and later
– innodb_autoinc_lock_mode – set lock behavior
– “1”  - Does not hold lock for simple Inserts
– “2”  - Does not hold lock in any case.

•  Only works with Row level replication
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Latching

Innodb Internal Locks
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Innodb Latching

• Innodb implements its own Mutexes and RW-Locks
– For transparency not only Performance

• Latching stats shown in SHOW INNODB STATUS
      ----------
      SEMAPHORES
      ----------
      OS WAIT ARRAY INFO: reservation count 13569, signal count 11421
      --Thread 1152170336 has waited at ./../include/buf0buf.ic line 630 for 0.00 seconds the semaphore:
      Mutex at 0x2a957858b8 created file buf0buf.c line 517, lock var 0
      waiters flag 0
      wait is ending
      --Thread 1147709792 has waited at ./../include/buf0buf.ic line 630 for 0.00 seconds the semaphore:
      Mutex at 0x2a957858b8 created file buf0buf.c line 517, lock var 0
      waiters flag 0
      wait is ending
      Mutex spin waits 5672442, rounds 3899888, OS waits 4719
      RW-shared spins 5920, OS waits 2918; RW-excl spins 3463, OS waits 3163
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Latching Performance

• Was improving over the years
• Still is problem for certain workloads

– XtraDB implements more fixes but not yet complete

• innodb_thread_concurrency
– Limiting concurrency can reduce contention
– Introduces contention on its own

• innodb_sync_spin_loops
– Trade Spinning for context switching
– Typically limited production impact
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Current Hotspots

• kernel_mutex
– A lot of operations use global kernel mutex

• log_mutex
– Writing data to the log buffer

• Index->lock
– Lock held for duration of low level index modification
– Can be serious hot spot for heavy write workloads

• Adaptive has latch
– Global latch. Problem with heavy read/write mix
– innodb_adaptive_hash_index=0

• Slow things down but reduce contention
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Page Replacement 

Page Replacement Flushing and Checkpointing
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Basic Page Replacement

• Innodb uses LRU for page replacement
– With Midpoint Insertion

• Innodb Plugin and XtraDB configure
– innodb_old_blocks_pct, innodb_old_blocks_time 
– Offers Scan resistance from large full table scans

• Scan LRU Tail to find clean block for replacement
• May schedule synchronous flush if no clean pages 

for replacement 
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Page Flushing

• Scheduled by Main Thread in Background
– Keep portion of the pages clean
– Make sure we have log space

• innodb_io_capacity
– Amount of writes per second server can do 
– Affects number of background flushes and insert buffer 

merges  (5% for each)

• Server will do merges and flushes faster when it is 
idle
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Maintaining clean pages

• innodb_max_dirty_pages_pct
– Default 90, later 75

• Innodb will start flushing pages as fast as it can if it is 
larger

• Value 0  is helpful for Fast Shutdown
– Set to 0 and wait until number of dirty pages is low

• Innodb looks for next/prev dirty pages and flushes it 
as well to keep IO more bulky
– Can be harmful for SSD storage
– Controled by innodb_flush_neighbor_pages in XtraDB
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Checkpointing

• Fuzzy Checkpointing
– Flush few pages to advance min unflushed LSN
– Flush List is maintained in this order

• MySQL 5.1 often has “hiccups” 
– No more space left in log files. Need to wait for flush to 

complete

• Percona Patches for 5.0 and XtraDB
– Adaptive checkpointing:  innodb_adaptive_checkpoint

• Innodb Plugin innodb_adaptive_flushing
– Best behavior depends on worload
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Recovery

How Innodb Recovers from Crash
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Recovery Stages

• Physical Recovery
– Recover partially written pages from double write buffer

• Redo Recovery
– Redo all the changes stored in transactional logs

• Undo Recovery
– Roll back not committed transactions
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Redo Recovery

• Foreground
– Server is not started until it is complete

• Larger Logs = Longer recovery time
– Though row sizes, database size, workload also matter

•  Scan Log files
– Buffer modifications on per page basics
– Apply modifications to data file

• LSN stored in the page tells if change needs to be 
applied  

-69-



Tuning Redo recovery

• innodb_log_file_size  - large logs longer recovery
• innodb_max_dirty_pages_pct 

– Fewer dirty pages faster recovery

• innodb_buffer_pool_size
– Larger buffer faster IO recovery
– Bug from 2007 which makes recovery slower with large 

buffer pool
• http://bugs.mysql.com/bug.php?id=29847

• innodb_fast_recovery   in XtraDB
– Can improve recovery speed 10x
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Undo Recovery

• Is Background since MySQL 5.0
– Performed after MySQL is started

• Speed depends on transaction length
– Very large UPDATE, INSERT... SELECT is problem.

• Is NOT problem with ALTER TABLE
– Commits every 10000 rows to avoid this problem

• Faster with larger innodb_log_file_size
• Be careful killing MySQL with run away update 

queries.
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Advanced Features

Insert Buffering, Adaptive Hash Index, Foreign Keys, 
Compression
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Insert Buffer

• Designed to speed up Inserts into large Indexes
– Reported up to 15 times IO reduction for some cases

• Works for Non-Unique Secondary Indexes only
• If leaf index page is not in buffer pool

– Store a note the page should be updated in memory

• If page containing buffered entries is read from disk 
they are merged transparently

• Innodb performs gradual insert buffer merges in 
background
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Insert Buffer Problems

• Can take up to half of buffer pool size
– Persists in tablespace to keep things safe
– innodb_ibuf_max_size in XtraDB to restrict it
– Full Insert Buffer is useless and wastes memory

• Delayed Insert Buffer merge can cause slowdown
– Too many merges need to happen on page reads

• Background merge speed may not be enough
– Tune by innodb_io_capacity, innodb_ibuf_accel_rate

• After Restart Merge speed can slow down
– Finding index entries to merge needs random IO
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More tuning of Insert Buffer

• Innodb Plugin, XtraDB you can disable insert 
buffering
– innodb_change_buffering=0
– Can be good for SSDs
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Adaptive Hash Index

• Built on top of existing BTREE Indexes to speed up 
lookups
– Both PRIMARY and Secondary indexes

• Can be built for full index and prefixes
• Partial Index

– Only built for index values which are accessed often

Hash table size 8850487, used cells 2381348, node heap has 4091 
buffer(s)
2208.17 hash searches/s, 175.05 non-hash searches/s
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Tuning Adaptive Hash Index

• Self tuning
– No tuning options are available.

• Can be disabled for performance reasons
– innodb_adaptive_hash_index
– Improves concurency but reduces performance
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Foreign Keys

• Implemented on Innodb level 
• Require indexes on both tables

– Can be very expensive sometimes

• Checks happen when row is modified
– No delayed checks till transaction commit

• Foreign Keys introduce additional locking overhead
– Many tricky deadlock situations are foreign key related
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Compression

• New in Innodb Plugin and XtraDB
– Requires “Barracuda” and innodb_file_per_table=1

• Per Page compression (mostly)
• Uses zlib for compression  (no settings available)
• Uses fancy tricks

– Per page update log to avoid re-compression
– Both Compressed and Uncompressed page can be stored 

in Buffer Pool
• ROW_FORMAT=COMPRESSED KEY_BLOCK_SIZE=4;

– Estimate how well the data will compress
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Problems with Compression

• Filesystem level compression may be more efficient
– ZFS

• Page size is too small for good compression
• Have to “Guess” Compression
• Compression setting is Per table

– Though some indexes compress better than others
• KEY_BLOCK_SIZE=16;

– Only compress externally stored BLOBs
– Can reduce size without overhead 
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Innodb Architecture and Performnce Optimization

Thanks for Coming

• Questions ? Followup ?
– pz@percona.com

• Yes, we do MySQL and Web Scaling Consulting
– http://www.percona.com

• Check out our book
– Complete rewrite of 1st edition

-81--81-
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