
Innodb Architecture and Performance
Optimization

-2-

Architecture and Performance

• Advanced Performance Optimization requires
transparency
– X-ray vision

• Impossible without understanding system
architecture

• Focus on Conceptual Aspects
– Exact Checksum algorithm Innodb uses is not important
– What matters

• How fast is that algorithm ?
• How checksums are checked/updated

Aspects or Architecture

• General Architecture
• Storage and File Layout
• Threads
• Memory
• Disk IO
• Logging
• Indexes
• Multi Versioning
• Row Locking
• Latching

-3-

Aspects of Architecture 2

• Page flushing and Replacement
• Insert Buffering
• Adaptive Hash Index
• BLOB Storage
• Recovery
• Compression Features
• Foreign Keys

-4-

Innodb Version

• Focus on Innodb Plugin and XtraDB
• Most things are the same in MySQL 5.1 built in

Innodb

-5-

Important Notice

• I'm bad with drawings
• You will need to use your imagination

– And watch my hands

-6-

General Architecture

• Traditional OLTP Engine
– “Emulates Oracle Architecture”

• Implemented using MySQL Storage engine API
• Row Based Storage. Row Locking. MVCC
• Data Stored in Tablespaces
• Log of changes stored in circular log files
• Data pages as pages in “Buffer Pool”

-7-

Storage Files Layout

Physical Structure of Innodb Tabespaces and Logs

-8-

Innodb Tablespaces

• All data stored in Tablespaces
– Changes to these databases stored in Circular Logs
– Changes has to be reflected in tablespace before log

record is overwritten

• Single tablespace or multiple tablespace
– innodb_file_per_table=1

• System information always in main tablespace
– Ibdata1
– Main tablespace can consist of many files

• They are concatenated

-9-

Tablespace Format

• Collection of Segments
– Segment is like a “file”

• Segment is number of extents
– Typically 64 of 16K page sizes
– Smaller extents for very small objects

• First Tablespace page contains header
– Tablespace size
– Tablespace id

-10-

Types of Segments

• Each table is Set of Indexes
– Innodb has “index organized tables”

• Each index has
– Leaf node segment
– Non Leaf node segment

• Special Segments
– Rollback Segment
– Insert buffer, etc

-11-

Innodb Space Allocation

• Small Segments (less than 32 pages)
– Page at the time

• Large Segments
– Extent at the time (to avoid fragmentation)

• Free pages recycled within same segment
• All pages in extent must be free before it is used in

different segment of same tablespace
– innodb_file_per_table=1 - free space can be used by

same table only

• Innodb never shrinks its tablespaces

-12-

Innodb Log Files

• Set of log files
– ib_logfile?
– 2 log files by default. Effectively concatenated

• Log Header
– Stores information about last checkpoint

• Log is NOT organized in pages, but records
– Records aligned 512 bytes, matching disk sector

• Log record format “physiological”
– Stores Page# and operation to do on it

• Only REDO operations are stored in logs.

-13-

Storage Tuning Parameters

• innodb_file_per_table
– Store each table in its own file/tablespace

• innodb_autoextend_increment
– Extend system tablespace in this increment

• innodb_log_file_size
• innodb_log_files_in_group

– Log file configuration

• Innodb page size
– Code Change Required

-14-

Using to File per Table

• Typically more convenient
• Reclaim space from dropped table
• ALTER TABLE ENGINE=INNODB

– reduce file size after data was deleted

• Store different tables/databases on different drives
• Backup/Restore tables one by one
• Support for compression in Innodb Plugin/XtraDB
• Will use more space with many tables
• Longer unclean restart time with many tables
• Performance is typically similar

-15-

Dealing with Run-away tablespace

• Main Tablespace does not shrink
– Consider setting max size
– innodb_data_file_path=ibdata1:10M:autoextend:max:10G

• Dump and Restore
• Export tables with XtraBackup

– And import them into “clean” server
– http://www.mysqlperformanceblog.com/2009/06/08/impossible-possible-moving-innodb-tables-

between-servers/

-16-

Resizing Log Files

• You can't simply change log file size in my.cnf
– InnoDB: Error: log file ./ib_logfile0 is of different size 0

5242880 bytes
– InnoDB: than specified in the .cnf file 0 52428800 bytes!

• Stop MySQL (make sure it is clean shutdow)
• Rename (or delete) ib_logfile*
• Start MySQL with new log file settings

– It will create new set of log files

-17-

Innodb Threads Architecture

What threads are there and what they do

-18-

General Thread Architecture

• Using MySQL Threads for execution
– Normally thread per connection

• Transaction executed mainly by such thread
– Little benefit from Multi-Core for single query

• innodb_thread_concurrency can be used to limit
number of executing threads
– Reduce contention

• This limit is number of threads in kernel
– Including threads doing Disk IO or storing data in TMP

Table.

-19-

Helper Threads

• Main Thread
– Schedules activities – flush, purge, checkpoint, insert

buffer merge

• IO Threads
– Read – multiple threads used for read ahead
– Write – multiple threads used for background writes
– Insert Buffer thread used for Insert buffer merge
– Log Thread used for flushing the log

• Purge thread (MySQL 5.5 and XtraDB)
• Deadlock detection thread.
• Monitoring Thread

-20-

Memory Handling

How Innodb Allocates and Manages Memory

-21-

Innodb Memory Allocation

• Take a look at SHOW INNODB STATUS
– XtraDB has more details

Total memory allocated 1100480512; in additional pool allocated 0
Internal hash tables (constant factor + variable factor)
 Adaptive hash index 17803896 (17701384 + 102512)
 Page hash 1107208
 Dictionary cache 8089464 (4427312 + 3662152)
 File system 83520 (82672 + 848)
 Lock system 2657544 (2657176 + 368)
 Recovery system 0 (0 + 0)
 Threads 407416 (406936 + 480)
Dictionary memory allocated 3662152
Buffer pool size 65535
Buffer pool size, bytes 1073725440
Free buffers 64515
Database pages 1014
Old database pages 393

-22-

Memory Allocation Basics

• Buffer Pool
– Set by innodb_buffer_pool_size
– Database cache; Insert Buffer; Locks
– Takes More memory than specified

• Extra space needed for Latches, LRU etc

• Additional Memory Pool
– Dictionary and other allocations
– innodb_additional_mem_pool_size

• Not used in newer releases

• Log Buffer
– innodb_log_buffer_size

-23-

Configuring Innodb Memory

• innodb_buffer_pool_size is the most important
– Use all your memory nor committed to anything else
– Keep overhead into account (~5%)
– Never let Buffer Pool Swapping to happen
– Up to 80-90% of memory on Innodb only Systems

• innodb_log_buffer_size
– Values 4-16MB typically make sense
– May need to be larger if using large BLOBs
– See number of data written to the logs
– Log buffer covering 10sec is good enough

-24-

Dictionary

• Holds information about Innodb Tables
– Statistics; Auto Increment Value, System information
– Can be 4-10KB+ per table

• Can consume a lot of memory with huge number of
tables
– Think hundreds of thousands

• innodb_dict_size_limit
– Limit the size in Percona Server
– Make it act as a real cache

-25-

Disk IO

How Innodb Performs Disk IO

-26-

Reads

• Most reads done by executing threads
• Read-Ahead performed by background threads

– Linear
– Random (removed in later versions)
– Do not count on read ahead a lot

• Insert Buffer merge process causes reads

-27-

Writes

• Data Writes are Background in Most cases
– As long as you can flush data fast enough you're good

• Synchronous flushes can happen if no free buffers
available

• Log Writes can by sync or async depending on
innodb_flush_log_at_trx_commit
– 1 – fsync log on transaction commit
– 0 – do not flush. Flushed in background ~ once/sec
– 2 – Flush to OS cache but do not call fsync()

• Data safe if MySQL Crashes but OS Survives

-28-

Page Checksums

• Protection from corrupted data
– Bad hardware, OS Bugs, Innodb Bugs
– Are not completely replaced by Filesystem Checksums

• Checked when page is Read to Buffer Pool
• Updated when page is flushed to disk
• Can be significant overhead

– Especially for very fast storage

• Can be disabled by innodb_checksums=0
– Not Recommended for Production

-29-

Double Write Buffer

• Innodb log requires consistent pages for recovery
• Page write may complete partially

– Updating part of 16K and leaving the rest

• Double Write Buffer is short term page level log
• The process is:

– Write pages to double write buffer; Sync
– Write Pages to their original locations; Sync
– Pages contain tablespace_id+page_id

• On crash recovery pages in buffer are checked to
their original location

-30-

Disabling Double Write

• Overhead less than 2x because write is sequential
• Relatively larger overhead on SSD; Plus life impact;
• Can be disabled if FS guaranties atomic writes

– ZFS

• innodb_doublewrite=0

-31-

Direct IO Operation

• Default IO mode for Innodb data is Buffered
• Good

– Faster flushes when no write cache
– Faster warmup on restart
– Reduce problems with inode locking on EXT3

• Bad
– Lost of effective cache memory due to double buffering
– OS Cache could be used to cache other data
– Increased tendency to swap due to IO pressure

• innodb_flush_method=O_DIRECT

-32-

Log IO

• Log are always opened in buffered mode
• Flushed by fsync() - default or O_SYNC
• Logs are often written in blocks less than 4K

– Read has to happen before write

• Logs which fit in cache may improve performance
– Small transactions and

innodb_flush_log_at_trx_commit=1 or 2

-33-

Indexes

How Indexes are Implemented in Innodb

-34-

Everything is the Index

• Innodb tables are “Index Organized”
– PRIMARY key contains data instead of data pointer

• Hidden PRIMARY KEY is used if not defined (6b)
• Data is “Clustered” by PRIMARY KEY

– Data with close PK value is stored close to each other
– Clustering is within page ONLY

• Leaf and Non-Leaf nodes use separate Segments
– Makes IO more sequential for ordered scans

• Innodb system tables SYS_TABLES and
SYS_INDEXES hold information about index “root”

-35-

Index Structure

• Secondary Indexes refer to rows by Primary Key
– No need to update when row is moved to different page

• Long Primary Keys are expensive
– Increase size of all Indexes

• Random Primary Key Inserts are expensive
– Cause page splits; Fragmentation
– Make page space utilization low

• AutoIncrement keys are often better than artificial
keys, UUIDs, SHA1 etc.

-36-

More on Clustered Index

• PRIMARY KEY lookups are the most efficient
– Secondary key lookup is essentially 2 key lookups

• PRIMARY KEY ranges are very efficient
– Build Schema keeping it in mind
– (user_id,message_id) may be better than (message_id)

• Changing PRIMARY KEY is expensive
– Effectively removing row and adding new one.

• Sequential Inserts give compact, least fragmented
storage
– ALTER TABLE tbl=INNODB can be optimization

-37-

More on Indexes

• There is no Prefix Index compressions
– Index can be 10x larger than for MyISAM table
– Innodb has page compression. Not the same thing.

• Indexes contain transaction information = fat
– Allow to see row visibility = index covering queries

• Secondary Keys built by insertion
– Often outside of sorted order = inefficient

• Innodb Plugin and XtraDB building by sort
– Faster
– Indexes have good page fill factor
– Indexes are not fragmented

-38-

Fragmentation

• Inter-row fragmentation
– The row itself is fragmented
– Happens in MyISAM but NOT in Innodb

• Intra-row fragmentation
– Sequential scan of rows is not sequential
– Happens in Innodb, outside of page boundary

• Empty Space Fragmentation
– A lot of empty space can be left between rows

• ALTER TABLE tbl ENGINE=INNODB
– The only medicine available.

-39-

Multi Versioning

Implementation of Multi Versioning and Locking

-40-

Multi Versioning at Glance

• Multiple versions of row exist at the same time
• Read Transaction can read old version of row, while

it is modified
– No need for locking

• Locking reads can be performed with SELECT FOR
UPDATE and LOCK IN SHARE MODE Modifiers

-41-

Transaction isolation Modes

• SERIALIZABLE
– Locking reads. Bypass multi versioning

• REPEATABLE-READ (default)
– Read commited data at it was on start of transaction

• READ-COMMITED
– Read commited data as it was at start of statement

• READ-UNCOMMITED
– Read non committed data as it is changing live

-42-

Updates and Locking Reads

• Updates bypass Multi Versioning
– You can only modify row which currently exists

• Locking Read bypass multi-versioning
– Result from SELECT vs SELECT .. LOCK IN SHARE

MODE will be different

• Locking Reads are slower
– Because they have to set locks
– Can be 2x+ slower !
– SELECT FOR UPDATE has larger overhead

-43-

Multi Version Implementaition

• The most recent row version is stored in the page
– Even before it is committed

• Previous row versions stored in undo space
– Located in System tablespace

• The number of versions stored is not limited
– Can cause system tablespace size to explode.

• Access to old versions require going through linked
list
– Long transactions with many concurrent updates can

impact performance.

-44-

Multi-Versioning Internals

• Each row in the database has
– DB_TRX_ID (6b) – Transaction inserted/updated row
– DB_ROLL_PTR (7b) - Pointer to previous version
– Significant extra space for short rows !

• Deletion handled as Special Update
• DB_TRX_ID + list of currently running transactions is

used to check which version is visible
• Insert and Update Undo Segments

– Inserts history can be discarded when transaction
commits.

– Update history is used for MVCC implementation

-45-

Multi Versioning Performance

• Short rows are faster to update
– Whole rows (excluding BLOBs) are versioned
– Separate table to store counters often make sense

• Beware of long transactions
– Especially many concurrent updates

• “Rows Read” can be misleading
– Single row may correspond to scanning thousand of

versions/index entries

-46-

Multi Versioning Indexes

• Indexes contain pointers to all versions
– Index key 5 will point to all rows which were 5 in the past

• Indexes contain TRX_ID
– Easy to check entry is visible
– Can use “Covering Indexes”

• Many old versions is performance problem
– Slow down accesses
– Will leave many “holes” in pages when purged

-47-

Cleaning up the Garbage

• Old Row and index entries need to be removed
– When they are not needed for any active transaction

• REPEATABLE READ
– Need to be able to read everything at transaction start

• READ-COMMITED
– Need to read everything at statement start

• Purge Thread may be unable to keep up with
intensive updates
– Innodb “History Length” will grow high

• innodb_max_purge_lag slows updates down

-48-

Handling Blobs

• Blobs are handled specially by Innodb
– And differently by different versions

• Small blobs
– Whole row fits in ~8000 bytes stored on the page

• Large Blobs
– Can be stored full on external pages (Barracuda)
– Can be stored partially on external page

• First 768 bytes are stored on the page (Antelope)

• Innodb will NOT read blobs unless they are touched
by the query
– No need to move BLOBs to separate table.

-49-

Blob Allocation

• Each BLOB Stored in separate segment
– Normal allocation rules apply. By page when by extent
– One large BLOB is faster than several medium ones
– Many BLOBs can cause extreme waste

• 500 byte blobs will require full 16K page if it does not fit with row

• External BLOBs are NOT updated in place
– Innodb always creates the new version

• Large VARCHAR/TEXT are handled same as BLOB

-50-

Innodb Locking

How Innodb Locking Works

-51-

Innodb Locking Basics

• Pessimistic Locking Strategy
• Graph Based Deadlock Detection

– Takes shortcut for very large lock graphs

• Row Level lock wait timeout
– innodb_lock_wait_timeout

• Traditional “S” and “X” locks
• Intention locks on tables “IS” “IX”

– Restricting table operations

• Locks on Rows AND Index Records
• No Lock escalation

-52-

Gap Locks

• Innodb does not only locks rows but also gap
between them

• Needed for consistent reads in Locking mode
– Also used by update statements

• Innodb has no Phantoms even in Consistent Reads
• Gap locks often cause complex deadlock situations
• “infinum”, “supremum” records define bounds of data

stored on the page
– May not correspond to actual rows stored

• Only record lock is needed for PK Update

-53-

Types of Locks in Innodb

• Next-Key-Lock
– Lock Key and gap before the key

• Gap-Lock
– Lock just the gap before the key

• Record-Only-Lock
– Lock record only

• Insert intention gap locks
– Held when waiting to insert into the gap

-54-

Advanced Gap Locks Stuff

• Gaps can change on row deletion
– Actually when Purge thread removes record

• Leaving conflicting Gap locks held
• Gap Locks are “purely inhibitive”

– Only block insertion.
– Holding lock does not allow insertion. Must also wait for

conflicting locks to be released

• “supremum” record can have lock, “infinum” can't
• This is all pretty complicated and you rarely need it in

practice

-55-

Lock Storage

• Innodb locks storage is pretty compact
– This is why there is no lock escalation !

• Lock space needed depends on lock location
– Locking sparse rows is more expensive

• Each Page having locks gets bitmap allocated for it
– Bitmap holds lock information for all records on the page

• Locks typically take 3-8 bits per locked row

-56-

Auto Increment Locks

• Major Changes in MySQL 5.1 !
• MySQL 5.0 and before

– Table level AUTO_INC lock for duration of INSERT
– Even if INSERT provided key value !
– Serious bottleneck for concurrent Inserts

• MySQL 5.1 and later
– innodb_autoinc_lock_mode – set lock behavior
– “1” - Does not hold lock for simple Inserts
– “2” - Does not hold lock in any case.

• Only works with Row level replication

-57-

Latching

Innodb Internal Locks

-58-

Innodb Latching

• Innodb implements its own Mutexes and RW-Locks
– For transparency not only Performance

• Latching stats shown in SHOW INNODB STATUS

 SEMAPHORES

 OS WAIT ARRAY INFO: reservation count 13569, signal count 11421
 --Thread 1152170336 has waited at ./../include/buf0buf.ic line 630 for 0.00 seconds the semaphore:
 Mutex at 0x2a957858b8 created file buf0buf.c line 517, lock var 0
 waiters flag 0
 wait is ending
 --Thread 1147709792 has waited at ./../include/buf0buf.ic line 630 for 0.00 seconds the semaphore:
 Mutex at 0x2a957858b8 created file buf0buf.c line 517, lock var 0
 waiters flag 0
 wait is ending
 Mutex spin waits 5672442, rounds 3899888, OS waits 4719
 RW-shared spins 5920, OS waits 2918; RW-excl spins 3463, OS waits 3163

-59-

Latching Performance

• Was improving over the years
• Still is problem for certain workloads

– XtraDB implements more fixes but not yet complete

• innodb_thread_concurrency
– Limiting concurrency can reduce contention
– Introduces contention on its own

• innodb_sync_spin_loops
– Trade Spinning for context switching
– Typically limited production impact

-60-

Current Hotspots

• kernel_mutex
– A lot of operations use global kernel mutex

• log_mutex
– Writing data to the log buffer

• Index->lock
– Lock held for duration of low level index modification
– Can be serious hot spot for heavy write workloads

• Adaptive has latch
– Global latch. Problem with heavy read/write mix
– innodb_adaptive_hash_index=0

• Slow things down but reduce contention

-61-

Page Replacement

Page Replacement Flushing and Checkpointing

-62-

Basic Page Replacement

• Innodb uses LRU for page replacement
– With Midpoint Insertion

• Innodb Plugin and XtraDB configure
– innodb_old_blocks_pct, innodb_old_blocks_time
– Offers Scan resistance from large full table scans

• Scan LRU Tail to find clean block for replacement
• May schedule synchronous flush if no clean pages

for replacement

-63-

Page Flushing

• Scheduled by Main Thread in Background
– Keep portion of the pages clean
– Make sure we have log space

• innodb_io_capacity
– Amount of writes per second server can do
– Affects number of background flushes and insert buffer

merges (5% for each)

• Server will do merges and flushes faster when it is
idle

-64-

Maintaining clean pages

• innodb_max_dirty_pages_pct
– Default 90, later 75

• Innodb will start flushing pages as fast as it can if it is
larger

• Value 0 is helpful for Fast Shutdown
– Set to 0 and wait until number of dirty pages is low

• Innodb looks for next/prev dirty pages and flushes it
as well to keep IO more bulky
– Can be harmful for SSD storage
– Controled by innodb_flush_neighbor_pages in XtraDB

-65-

Checkpointing

• Fuzzy Checkpointing
– Flush few pages to advance min unflushed LSN
– Flush List is maintained in this order

• MySQL 5.1 often has “hiccups”
– No more space left in log files. Need to wait for flush to

complete

• Percona Patches for 5.0 and XtraDB
– Adaptive checkpointing: innodb_adaptive_checkpoint

• Innodb Plugin innodb_adaptive_flushing
– Best behavior depends on worload

-66-

Recovery

How Innodb Recovers from Crash

-67-

Recovery Stages

• Physical Recovery
– Recover partially written pages from double write buffer

• Redo Recovery
– Redo all the changes stored in transactional logs

• Undo Recovery
– Roll back not committed transactions

-68-

Redo Recovery

• Foreground
– Server is not started until it is complete

• Larger Logs = Longer recovery time
– Though row sizes, database size, workload also matter

• Scan Log files
– Buffer modifications on per page basics
– Apply modifications to data file

• LSN stored in the page tells if change needs to be
applied

-69-

Tuning Redo recovery

• innodb_log_file_size - large logs longer recovery
• innodb_max_dirty_pages_pct

– Fewer dirty pages faster recovery

• innodb_buffer_pool_size
– Larger buffer faster IO recovery
– Bug from 2007 which makes recovery slower with large

buffer pool
• http://bugs.mysql.com/bug.php?id=29847

• innodb_fast_recovery in XtraDB
– Can improve recovery speed 10x

-70-

http://bugs.mysql.com/bug.php?id=29847

Undo Recovery

• Is Background since MySQL 5.0
– Performed after MySQL is started

• Speed depends on transaction length
– Very large UPDATE, INSERT... SELECT is problem.

• Is NOT problem with ALTER TABLE
– Commits every 10000 rows to avoid this problem

• Faster with larger innodb_log_file_size
• Be careful killing MySQL with run away update

queries.

-71-

Advanced Features

Insert Buffering, Adaptive Hash Index, Foreign Keys,
Compression

-72-

Insert Buffer

• Designed to speed up Inserts into large Indexes
– Reported up to 15 times IO reduction for some cases

• Works for Non-Unique Secondary Indexes only
• If leaf index page is not in buffer pool

– Store a note the page should be updated in memory

• If page containing buffered entries is read from disk
they are merged transparently

• Innodb performs gradual insert buffer merges in
background

-73-

Insert Buffer Problems

• Can take up to half of buffer pool size
– Persists in tablespace to keep things safe
– innodb_ibuf_max_size in XtraDB to restrict it
– Full Insert Buffer is useless and wastes memory

• Delayed Insert Buffer merge can cause slowdown
– Too many merges need to happen on page reads

• Background merge speed may not be enough
– Tune by innodb_io_capacity, innodb_ibuf_accel_rate

• After Restart Merge speed can slow down
– Finding index entries to merge needs random IO

-74-

More tuning of Insert Buffer

• Innodb Plugin, XtraDB you can disable insert
buffering
– innodb_change_buffering=0
– Can be good for SSDs

-75-

Adaptive Hash Index

• Built on top of existing BTREE Indexes to speed up
lookups
– Both PRIMARY and Secondary indexes

• Can be built for full index and prefixes
• Partial Index

– Only built for index values which are accessed often

Hash table size 8850487, used cells 2381348, node heap has 4091
buffer(s)
2208.17 hash searches/s, 175.05 non-hash searches/s

-76-

Tuning Adaptive Hash Index

• Self tuning
– No tuning options are available.

• Can be disabled for performance reasons
– innodb_adaptive_hash_index
– Improves concurency but reduces performance

-77-

Foreign Keys

• Implemented on Innodb level
• Require indexes on both tables

– Can be very expensive sometimes

• Checks happen when row is modified
– No delayed checks till transaction commit

• Foreign Keys introduce additional locking overhead
– Many tricky deadlock situations are foreign key related

-78-

Compression

• New in Innodb Plugin and XtraDB
– Requires “Barracuda” and innodb_file_per_table=1

• Per Page compression (mostly)
• Uses zlib for compression (no settings available)
• Uses fancy tricks

– Per page update log to avoid re-compression
– Both Compressed and Uncompressed page can be stored

in Buffer Pool
• ROW_FORMAT=COMPRESSED KEY_BLOCK_SIZE=4;

– Estimate how well the data will compress

-79-

Problems with Compression

• Filesystem level compression may be more efficient
– ZFS

• Page size is too small for good compression
• Have to “Guess” Compression
• Compression setting is Per table

– Though some indexes compress better than others
• KEY_BLOCK_SIZE=16;

– Only compress externally stored BLOBs
– Can reduce size without overhead

-80-

Innodb Architecture and Performnce Optimization

Thanks for Coming

• Questions ? Followup ?
– pz@percona.com

• Yes, we do MySQL and Web Scaling Consulting
– http://www.percona.com

• Check out our book
– Complete rewrite of 1st edition

-81--81-

mailto:pz@percona.com
http://www.percona.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81

